
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 49 (2006) 2864–2876
Improved analytical solution for inverse heat conduction problems
on thermally thick and semi-infinite solids

P.L. Woodfield a,1, M. Monde b,*, Y. Mitsutake b,2

a Institute of Ocean Energy, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
b Department of Mechanical Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan

Received 7 October 2005
Available online 17 April 2006
Abstract

Analytical solutions to inverse heat conduction problems with a far-field boundary condition are derived for one- and two-dimen-
sional problems using a Laplace transform technique. Accuracy of the predictions is improved by superposition of successive corrections
to the function used to approximate the measured data. Long-term history of high frequency modes in both time and space is neglected
noting that these components do not penetrate deeply into the solid. The two-dimensional solution is a relatively simple extension of the
one-dimensional formulation. The present results are most useful for determining surface temperature and heat flux based on measured
data from a row of sensors at a single depth below the surface and a known or measured boundary condition far from the surface.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The focus of this present article is thermally thick and
semi-infinite solids. As is well known, the Fourier number,
at/z2 is a key dimensionless parameter for relating time and
length scales for heat conduction in solids. For example, if
at/H2 < 0.1, where H is the thickness of a one-dimensional
plate then for practical purposes, the plate may be treated
as a semi-infinite solid (to better than 1% accuracy) since
the conditions at the surface have a very small effect at
the position z = H for these short time scales.

Consider also the unsteady one-dimensional inverse heat
conduction problem (IHCP) where the surface temperature
is unknown. Heat conduction is governed by a second-
order partial differential equation requiring for closure an
initial condition and two spatial boundary conditions (at
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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z = z1 and z = z2). All inverse solutions will have trouble
resolving time scales corresponding to at=z2

1 < 0.1, where
z1 is the depth of the closest sensor to the surface. This is
simply because the first sensor hardly detects surface tem-
perature fluctuations with such a small time period. There-
fore for good time resolution, the first sensor should be
placed close to the surface. The story is different for the sec-
ond boundary at z = z2, however. The effect of its location
on inverse solutions is the key interest in this study.

In principle the location of the second boundary should
not be critical for closing the mathematical problem. More-
over, the nature of the boundary at z2 whether it is mea-
sured temperatures or known heat flux or even the case
of the semi-infinite solid (z2!1) should not greatly influ-
ence the result. However in practice as z2 becomes larger
(i.e., at=z2

2 becomes smaller) the solid bounded by
0 < z < z2 tends to ‘remember’ more long-term thermal his-
tory. Therefore for analytical methods, additional effort is
required to ensure approximating functions and inverse
solutions retain extra details of the thermal history if z2 is
large. This makes such problems more challenging than
IHCPs for ‘thin’ solids. Here, and throughout this article,
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Nomenclature

a thermal diffusivity
A arbitrary constant coefficient in Eq. (A5a) repre-

senting magnitude of oscillation
B any length appearing in the exponentials of the

solution in Laplace space
C1 factor for reducing size of consecutive data win-

dows (Eq. (7))
C2 Fourier number to decide how much future data

to include (Eq. (8))
C3 Fourier number to decide size of first window in

2D calculation (Eq. (20))
Fj time function to approximate the size of the

coefficient for the jth eigenfunction
gn function associated with solution for known

heat flux boundary
Gi,k coefficient for inverse solution
h function defined by Eq. (A10)
H thickness of finite solid in z-direction
L length of two-dimensional solid in x-direction
L{} Laplace transform operator
mj jth eigenvalue
Nj number of eigenfunctions minus one
Nk order of approximating polynomial
Nmin minimum number of data points permitted for

smallest window
Ncorr number of corrections applied to the polynomial

fit
Pi,k coefficient in approximating polynomial

r radial position
R radius of cylinder
s Laplace transform variable
t time
t* start of data window for two-sensor solution
tf finish of data window for one-sensor solution
ti start of data window for ith correction to

approximating function
T temperature
Tsurf surface temperature
Tmeas measured temperature data
Tcorr temperature difference between approximating

function and measured data
x distance along the surface in two-dimensional

problem
z depth from surface
z1 depth of sensor 1
z2 depth of sensor 2

Greek symbols

C() gamma function
f dimensionless length defined by Eq. (A7a)
h surface temperature correction
k thermal conductivity
s dimensionless time defined by Eq. (A7c)
/ function appearing in Eq. (A6a)
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the expression ‘thermally thick’ is understood to mean that
for the time scale of interest, the Fourier number based on
the thickness of the solid (or position of z2) is small (say less
than one). In a similar manner, the expression ‘long-term
history’ refers to temperature data such that the Fourier
number based on the depth of the deepest sensor and the
time back to this data is significantly greater than unity.

Although limited to fairly simple geometry, explicit ana-
lytical solutions to IHCPs are very fast computationally and
are of fundamental importance to understanding all IHCPs.
Burggraf [1], Sparrow et al. [2], Imber [3] and Shoji [4] have
among others made important contributions to the analyt-
ical approaches for solving IHCPs. Based on these earlier
studies but using polynomials in the half-power of time to
approximate the measured data, Monde and co-workers
[5–8] were able to derive successful analytical solutions to
IHCPs in both one and two dimensions. The most accurate
results were obtained for cases where the temperature sen-
sors were located at two different depths, z1 and z2, from
the surface of the solid. In particular they recommended
that z1 be as close as practical to the surface. The minimum
prediction time was found to improve if z2 also was close to
the surface [7]. In this way treatment of the IHCP could be
reduced to application of the inverse solution to a relatively
thin layer from z = 0 to z = z2 and difficulties associated
with treatment of thick solids were largely avoided.

Starting with Monde’s formulation [7,8], Woodfield
et al. [5] made use of the fact that the top layer from the
surface to z2 need not be overly thick in well-designed
experiments [9,10] to justify neglecting the long-term his-
tory of the data. They demonstrated that by limiting the
range of data used by the inverse solution to a small win-
dow, the predictions from the analytical solutions by
Monde et al. [6–8] improved for data with complicated
fluctuations. The Fourier number for the sensor at the sec-
ond depth determined the minimum size of the data win-
dow. Again their study focused on the cases with sensor
readings at two depths in the solid.

In the approach with sensors at two depths, even when
applied to a semi-infinite solid, no reference is made to
the semi-infinite boundary condition. This makes the
method very flexible and same solution is applicable to a
range of problems since the far-field boundary condition
is not used. However, in cases where the semi-infinite
boundary condition is actually valid or some other bound-
ary condition is known then in principle, one row of sensors
could become redundant. This is highly desirable since
experimental apparatus can become simpler or if the
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additional sensors are not removed the extra information
could be used to confirm the results or even determine the
thermal diffusivity of the material [6]. Monde et al. [6–8]
had some success with inverse solutions based on a single
depth of sensors although the reported accuracy was not
as good as that for two rows of sensors [8]. In the present
article we propose a modified procedure that greatly
extends the applicable time range for the Laplace transform
analytical solution to IHCPs with sensors at a single depth
in semi-infinite and thick solids. Moreover, by changing the
boundary condition in the formulation, the procedure also
can be applied to the case with sensors at two depths but
with the added flexibility that the second depth can be far
from the surface and fewer sensors are required. The proce-
dure is applied to both one- and two-dimensional problems.

2. Formulation of inverse solution

For the purposes of illustrating the present technique
consider the one-dimensional case of a single sensor at
depth z1 below the surface in a semi-infinite solid. The
problem is formulated as in Eq. (1).

oT
ot
¼ a

o
2T

oz2
ð1aÞ

T jt¼t0
¼ T 0 ð1bÞ

T jz!1 ¼ T 0 ð1cÞ

ðT � T 0Þjz¼z1
¼
XNk

k¼0

P 0;k
ðt � t0Þk=2

Cððk=2Þ þ 1Þ þ
XN corr

i¼1

XNk

k¼0

P i;k
ðt � tiÞk=2

Cððk=2Þ þ 1Þ
ð1dÞ

Suppose we have some experimental data in the range from
time, t0, to time, tf, and we wish to know the surface tem-
perature at time, t, where t is a little before tf. The goal of
Eq. (1d) is to approximate the measured data from time, t0,
to tf. In particular, the fit should be very accurate near the
time of interest, t, and low frequency components from the
long-term history should be retained. The first summation
on the right of Eq. (1d) involving the coefficients, P0,k is a
least-squares approximation to the data from t = 0 to tf.
The second summation involving the coefficients, Pi,k is
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Fig. 1. Data ranges used to calculate surface temperature and heat flux at ti
the key contribution of this present study. It represents a
set of corrections to the original fit to make Eq. (1d) better
approximate the data near time, t. For example, the sum
from k = 0 to Nk with coefficients, P1,k is a correction to
the data fit in the range from time, t1, to tf. The total num-
ber of corrections is denoted as Ncorr. Note that Pi,k is a
constant for t > ti and zero for t < ti.

The ranges for first estimate and corrections in Eq. (1d)
are illustrated graphically in Fig. 1(a). The case considered
in the figure is computer-generated data for a semi-infinite
solid where the exact solution for the boundary heat flux is
a square wave in time. Because the size of the data window
becomes smaller and each correcting polynomial in Eq.
(1d) has the same number of coefficients, the data can be
approximated well near time, t. As in [5], the present
approach requires that the data fit and inverse solution
be applied independently for each point in time.

By the principle of superposition it is easy to see that the
problem defined by Eqs. (1a)–(1d) is simply the summation
of a number of problems of the form given by Eq. (2).

oh
ot
¼ a

o2h
oz2

ð2aÞ

hjt¼ti
¼ 0 ð2bÞ

hjz!1 ¼ 0 ð2cÞ

hjz¼z1
¼
XNk

k¼0

P i;k
ðt � tiÞk=2

Cððk=2Þ þ 1Þ ð2dÞ

Eq. (2) is the basic form defining the IHCP tackled by
Monde et al. [7] for the one-dimensional semi-infinite solid.
The gamma function, C(), is inserted in the denominator of
Eqs. (1d) and (2d) to make the Laplace transform a little
tidier. After taking Laplace transforms and solving in
Laplace space Eq. (3) results.

h ¼
XNk

k¼0

P i;k

sðk=2Þþ1
e�

ffiffiffiffiffi
s=a
p

ðz�z1Þ ð3Þ

Substituting z = 0, replacing the exponential with a series
expansion and returning to the time domain, the solution
to Eq. (2) is given by Eq. (4).
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Initialize:
T = T

t = 0
surf 0
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Initialize required correction:
{T } = {T } - T

(range: t t )
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Fit required correction to polynomial
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Fig. 2. Algorithm for implementing present inverse solution.
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h ¼
XNk

k¼�1

Gi;kðt � tiÞk=2

Cððk=2Þ þ 1Þ ð4Þ

where Gi,k is the coefficient of s�((k/2)+1) of the series satis-
fying Eq. (5).

XN k

k¼�1

Gi;k

sðk=2Þþ1
¼
XNk

n¼0

P i;n

sðn=2Þþ1

X1
j¼0

1

j!
z1ffiffiffi

a
p
� �j

sj=2 ð5Þ

Note that in Eq. (5) we need only consider terms in the
range from k = �1 to k = Nk and that values for Gi,k

may be extracted easily in a computer program using a
nested loop [5]. Further details of this approach to IHCPs
can be found in Ref. [5–8]. Thus by the result in Eq. (4) and
the principle of superposition, the final solution to Eqs.
(1a)–(1d) for the temperature at the surface is given by
Eq. (6). The surface heat flux may be obtained by differen-
tiating Eq. (3) with respect to z, multiplying by �k and then
proceeding in the same manner as for temperature. Alter-
natively, the same analytical result for surface heat flux
may be obtained by directly differentiating the results given
in Appendix 2 with respect to z.

T jz¼0 � T 0 ¼
XN corr

i¼0

XNk

k¼�1

Gi;kðt � tiÞk=2

Cððk=2Þ þ 1Þ ð6Þ

It should be mentioned in passing that Eq. (4) is derived
from an approximate inverse Laplace transform since
replacing the exponential with the truncated series expan-
sion does not necessarily account for the full effect of the
branch point at s = 0. Nevertheless, we have found by
numerical experiment that if Eq. (2d) is accurate then the
accuracy of Eq. (4) with z < z1 diminishes only as
aðt � tiÞ=z2

1 ! 0 in the region where all inverse solutions be-
come questionable.

3. Implementation

To implement the proposed solution procedure, it is not
necessary to store simultaneously all of the coefficients,
Pi,k, in Eq. (1d). Fig. 2 shows how corrections and updates
to the solution may be applied in an iterative manner
resulting in the surface temperature at time t, as given by
Eq. (6).

In Fig. 2, Tsurf is the unknown surface temperature and
{Tmeas} is the measured temperature data at depth z = z1.
The curly brackets, {} are used for a set of discrete points.
{Tcorr} represents the difference between the approximating
equation (Eq. (1d)) and the measured data for i � 1 itera-
tions of the loop in Fig. 2. The basic inverse solution, hsurf

in Fig. 2 is specified by Eq. (4) once appropriate coefficients
have been selected for the polynomial fit to the required
correction for loop i. For each correction, the size of the
data window, (tf � ti), reduces by a factor of C1 (where
0 < C1 < 1) as in Eq. (7). For the present study C1 = 0.5
is found to be near the optimum in terms of computational
speed and accuracy.
tiþ1 ¼ tf � C1ðtf � tiÞ ð7Þ
The time, tf, in Eq. (7) is chosen such that the Fourier num-
ber based on the depth of the thermocouple and the time
after t is given by Eq. (8), where C2 is a number of an order
less than one (here we have taken C2 = 0.8).

aðtf � tÞ=z2
1 ¼ C2 ð8Þ

Eq. (8) allows more than enough future data to be included
in the fit to help account for the delay required for a change
on the surface to penetrate to z1. Finally, the loop termi-
nates when the window size becomes so small that the num-
ber of data points in the range (tf � ti+1) becomes of a
similar order of magnitude as the number of coefficients
in the approximating polynomial. In the present study we
use (tf � ti+1) < Nmin where Nmin = 8 for the case where
Nk = 5.

4. Motivation for proposed form of approximating function

The goal of Eq. (1d) is to approximate the measured
data from the sensor. Ideally, it would be desirable to find
a single function, which could capture accurately whole
range of data and then the surface temperature at every
point in time could be evaluated immediately. However,
this is not easily done and is in fact one of the key issues
for applying analytical inverse solutions to practical data.
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As mentioned above, in the present study we content our-
selves to apply different data fits and the inverse solution
separately for each point in time. This is more computa-
tionally expensive than a single equation but allows for a
consistently accurate treatment. Moreover, with modern
digital computers the computation time for the present
analytical solution is not a major concern. For example,
on a modest Pentium IV personal computer with a clock
speed of 1.8 GHz, a one-dimensional problem with 400
data points using the present procedure requires less than
2 s to evaluate the surface temperature and heat flux at
400 different values of t.

To further discuss the merits of Eq. (1d), it is helpful to
consider a concrete example. Fig. 3 illustrates how Eq. (1d)
approximates the data from time zero to tf. As in Fig. 1, the
case given is computer-generated data for a square-wave
heat flux on the surface of a semi-infinite solid. The mate-
rial is copper, and the maximum heat flux, 1 MW/m2, and
the depth z1 = 2 mm are of the order of magnitude appear-
ing in the authors’ experimental work for quenching of
high temperature surfaces [9,10].

The finer solid line in Fig. 3 shows to what degree a
least-squares fit of a single polynomial in the half-power
of time can approximate the whole range from time zero
to tf. This is equivalent to using only the first series involv-
ing P0,k in Eq. (1d). It is quite clear that the finer solid line
captures the approximate trend of the data but does not
accurately fit the data in the important region leading up
to the time of interest, ‘t’.

The heavy solid line in Fig. 3 shows the final approxima-
tion to the data using Eq. (1d) where five corrections have
been employed. In this case the fit is very good close to
time, t. It should be noticed in Fig. 3 that for time less than
about 13 s, the accuracy of the solid line fit to the data dete-
riorates somewhat and tends to fluctuate around the given
data. This is not a major concern since it can be demon-
strated that high frequency components do not penetrate
deeply into the solid [11]. Thus, high frequency fluctuations
in the long-term history are quickly damped and have little
effect on the result at time ‘t’. It is important, however, that
higher frequency modes in the data close to the time of
time (s)
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Fig. 3. Fit to data in order to estimate the surface temperature and heat
flux at time ‘t’.
interest be resolved correctly. This provides the motivation
for using successively smaller correcting windows as illus-
trated in Fig. 1(a) and Eq. (7) close to time ‘t’. On the other
hand, low frequency modes do penetrate deeply into the
solid so any suitable approximating function should retain
low frequency fluctuations a considerable time before the
time of interest, ‘t’.

It may be worth mentioning here that in the case of sen-
sors at two depths reasonably close to the surface, we need
not concern ourselves with the low-frequency modes in his-
tory of the data. This is because the sensors at the second
depth automatically detect any thermal waves returning
from deep within the solid. Thus the single window shown
in Fig. 1(b) is justified for the case of sensors at two depths
but some of the long-term history must be retained for the
single-sensor case in Fig. 1(a).

5. Extension to problems involving thick finite solids

The present method is not limited to problems involving
semi-infinite solids. In principle, any fundamental solution
to a heat conduction problem with a zero initial condition
and one homogeneous boundary condition (or three for
2D) could be applied in place of hsurf in Fig. 2. However
for the present kind of problems, success is more likely if
the analytical solution also has been designed specifically
with thermally thick solids in mind. Consider the important
case of a one-dimensional slab of finite thickness, H, where
the heat flux is zero at z = H. The formulation of the basic
problem is the same as Eq. (2) except that Eq. (2c) is
replaced by Eq. (9).

oh
oz

����
z¼H

¼ 0 ð9Þ

Solving the problem in Laplace space gives Eq. (10).

h ¼
XNk

k¼0

P i;k

sðk=2Þþ1

coshð
ffiffiffiffiffiffiffi
s=a

p
ðH � zÞÞ

coshð
ffiffiffiffiffiffiffi
s=a

p
ðH � z1ÞÞ

ð10Þ

Unfortunately, expanding the hyperbolic functions in Eq.
(10) and returning to the time domain in the manner
suggested previously by Monde and co-workers [5,7,8]
does not necessarily lead to a result that will converge for
large values of H. Therefore we follow a slightly different
procedure. Using the approach suggested in Carslaw
and Jaeger [11] for heat conduction problems with small
values of time, Eq. (10) can be rewritten as Eq. (11). Here
we have made use of a Maclaurin series expansion of
1/(1 � (�exp[�2(s/a)1/2 (H � z1)])).

h ¼
XNk

k¼0

P i;k

sðk=2Þþ1
e�

ffiffiffiffiffi
s=a
p

ðz�z1Þ

þ
X1
n¼1

XNk

k¼0

ð�1Þn P i;k

sðk=2Þþ1
e�

ffiffiffiffiffi
s=a
p

ð2nðH�z1Þþz�z1Þ

þ
X1
n¼0

XNk

k¼0

ð�1Þn P i;k

sðk=2Þþ1
e�

ffiffiffiffiffi
s=a
p

ð2nðH�z1Þþ2H�z�z1Þ ð11Þ
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We can see that the first summation on the right of Eq. (11)
is identical to the semi-infinite case, Eq. (3). The other two
summations all involve terms containing expressions of the
form:

e�
ffiffiffiffiffi
s=a
p

B

sðk=2Þþ1

where B is a positive number provided 2H is larger than
z + z1. For cases where B is positive, the exact inverse
Laplace transform [11] is given by:

L�1 e�
ffiffiffiffiffi
s=a
p

B=sk=2þ1
n o

¼ ð4tÞk=2ikerfcðB=2
ffiffiffiffi
at
p
Þ ð12Þ

The repeated integral of the complementary error function
ikerfc ( ) is defined and presented in a convenient form for
implementation in Appendix II of Ref. [11]. Therefore,
the basic function for estimating the surface temperature
for a finite, but thick, one-dimensional solid that is insu-
lated at z = H, is the semi-infinite result plus a correction
involving summations of the error function as given by
Eq. (13).

h ¼
XNk

k¼�1

Gi;kðt� tiÞk=2

Cððk=2Þ þ 1Þ þ
X1
n¼1

XNk

k¼0

ð�1ÞnP i;kð4ðt� tiÞÞk=2

� ikerfc
2nðH � z1Þ � z1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt� tiÞ

p
 !

þ
X1
n¼0

XNk

k¼0

ð�1ÞnP i;kð4ðt� tiÞÞk=2

� ikerfc
2nðH � z1Þ þ 2H � z1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt� tiÞ

p
 !

ð13Þ

It should be mentioned that for large values of B, Eq. (12)
rapidly approaches zero and Eq. (13) converges well.
Therefore if H is much larger than z1, only a few terms
are required in the summations to infinity. Eq. (13) can
be used to replace Eq. (4) in the algorithm shown in Fig. 2.

6. Extension to two-dimensional problems

The two-dimensional problem has some additional com-
plications, which require discussion. Consider for example
the case of a thick two-dimensional plate of length, L, in
Cartesian coordinates with a single line of sensors at depth
z1. The plate is insulated at both ends and at z = H. Like
the one-dimensional finite plate, the approach used in [5]
has trouble for large values of H. Therefore we present a
modified procedure with some similarities to Section 5
above.

Unsteady heat conduction is governed by Eq. (14a), and
the initial and boundary conditions are specified in Eqs.
(14b)–(14e).

1

a
oh
ot
¼ o2h

oz2
þ o2h

ox2
ð14aÞ

hjt¼ti
¼ 0 ð14bÞ

oh
ox

����
x¼0

¼ oh
ox

����
x¼L

¼ 0 ð14cÞ
oh
oz

����
z¼H

¼ 0 ð14dÞ

hjz¼z1
¼
XNj

j¼0

F i;jðt � tiÞ cos mj
x
L

� �
ð14eÞ

The eigenvalues in Eq. (14e) are set as mj=jp where
(j = 0,1,2, . . .) in order to be in keeping with the boundary
conditions given by Eq. (14c). To simplify the notation,
from this point forward we will replace (t � ti) with t and
drop the subscript i. The approximating function, Fj( ) cap-
tures the variation with time of the coefficient of the jth
eigenfunction based on measurements at depth z1. In a sim-
ilar manner to Eq. (2d) use is made of a polynomial series
in the half power of time, but with an additional factor as
shown in Eq. (15).

F jðtÞ ¼ e�am2
j t=L2

XNk

k¼0

P j;k

Cððk=2Þ þ 1Þ t
k=2 ð15Þ

For the case of mj = 0 Eq. (15) is identical in form to Eq.
(2d). Inclusion of the exponential factor in Eq. (15) makes
the inverse Laplace transform much simpler and is a signif-
icant modification to the procedure previously proposed by
Monde et al. [5,7,8]. Transforming Eq. (15) into Laplace
space gives Eq. (16).

F jðsÞ ¼
XNk

k¼0

1

ðsþ ðam2
j=L2ÞÞðk=2Þþ1

ð16Þ

Solving the problem defined by Eq. (14) in the Laplace do-
main results in Eq. (17).

hðz; xÞ ¼
XNj

j¼0

F jðsÞ

� cos
mjx
L

� � cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=aÞ þ ðm2

j=L2Þ
q

ðH � zÞ
� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=aÞ þ ðm2

j=L2Þ
q

ðH � z1Þ
� �

ð17Þ
Letting pj ¼ sþ ðam2

j=L2Þ and combining Eqs. (16) and
(17) we obtain Eq. (18), which has a similar form to the
one-dimensional case expressed in Eq. (10).

hðz; xÞ ¼
XNj

j¼0

cosðmjx=LÞ
XNk

k¼0

P j;k

pðk=2Þþ1
j

cosh
ffiffiffiffiffiffiffiffiffi
pj=a

q
ðH � zÞ

� �
cosh

ffiffiffiffiffiffiffiffiffi
pj=a

q
ðH � z1Þ

� �
ð18Þ

We now proceed in exactly the same manner as for the one-
dimensional case and then make use of the following shift-
ing property of Laplace transforms:

L eatf ðtÞf g ¼ f ðs� aÞ
The result for surface temperature in the time domain, as
given by Eq. (19) has many similarities with Eq. (13) except
for the summation over all eigenfunctions and the expo-
nential factor arising from the shift.
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h ¼
XNj

j¼0

cosðmjx=LÞe�am2
j t=L2

h1DðtÞ ð19aÞ

h1DðtÞ ¼
XNk

k¼�1

Gj;ktk=2

Cððk=2Þ þ 1Þ þ
X1
n¼1

XNk

k¼0

ð�1ÞnP j;kð4tÞk=2

� ikerfc
2nðH � z1Þ � z1

2
ffiffiffiffi
at
p

� �
þ
X1
n¼0

XNk

k¼0

ð�1ÞnP j;kð4tÞk=2

� ikerfc
2nðH � z1Þ þ 2H � z1

2
ffiffiffiffi
at
p

� �
ð19bÞ

While the exponential factor in Eq. (15) makes the algebra
relating to the Laplace transform very convenient, it places
a strong restriction on the maximum size for the data win-
dow for eigenfunctions other than where mj = 0. Because
the exponential factor decays very quickly with time, even
a simple function approximated by Eq. (15) will require
huge numerical values for the coefficients Pj,k if t is large.
It is some consolation that in the final solution given by
Eq. (19), the same exponential factor, expð�am2

j t=L2Þ,
strongly damps and therefore reverses the effect of the large
coefficients. However, numerically we have the unfavorable
situation of very large numbers multiplied by very small
numbers.

Fortunately, all the above problems can be overcome if
we note that the eigenfunctions with large eigenvalues do
not create temperature waves that penetrate deeply into
the solid. Therefore at least some long-term history may
be neglected for all cases except mj = 0, which has exactly
the same form as the one-dimensional case. In fact, by con-
sidering an analytical solution to the forward heat conduc-
tion problem on a semi-infinite solid (see Appendix 1) it
can be shown that the effect of the long term thermal his-
tory for the jth eigenfunction decays in approximate pro-
portion to erfc((am2

j t=L2Þ1=2). This indicates that for 0.1%
accuracy in relation to the contribution of the jth eigen-
function we do not need to consider any history before
am2

j ðt � t0Þ=L2 � 5.8. Therefore, instead of using t0 = 0 as
in Figs. 1(a) and 2, we use Eq. (20) where t0 is the start-
ing point for the very first data window for the jth
eigenfunction.

t0 ¼ t � C3L2=ðam2
j Þ ð20Þ

The limit of C3 = 5.8 still may cause the appearance of
fairly large values for the coefficients Pj,k, but the numerical
problems mentioned above are avoided. Also, a smaller
starting window means fewer calculation windows are re-
quired and the computation time is reduced.

The final algorithm for the two-dimensional case is sim-
ilar to Fig. 2 except that each eigenfunction component is
considered separately and the first window size is set smal-
ler as mj becomes larger. Another small difference for the
present two-dimensional formulation is that we have found
that the results are significantly smoother if the half-poly-
nomial function is restricted to five terms (Nk = 4). This
is a little lower than the optimum (5 < Nk < 8) recom-
mended by Monde et al. [7] and probably is due to the dif-
ferent approach in the formulation. Also, the interpolation
procedure given in [5] is followed and the coefficients of the
higher order eigenfunctions are damped using Eq. (21)
before applying the inverse solution. In Eq. (21) mjcut is
the ‘cut-off’ eigenvalue for the Butterworth type smoother
corresponding to the number of sensors plus 3 [5].

F jjsmooth ¼ F jjraw=ð1þ ðmj=mjcutÞ4Þ ð21Þ

Before concluding this section it is worth noting that for
large values of mj, even the first window as defined by
Eq. (20) may be so small that it contains only one data
point. In such cases, rather than ignore the contribution
of that particular eigenfunction completely we have found
it is better to first fit a half-polynomial function to the coef-
ficients for a larger window of the data and then interpolate
several points near the time of interest. Eq. (15) can then be
fitted to the interpolated points.

7. Application to problems with large Fourier numbers

From the theme of the paper the reader may have the
impression that the present method cannot be applied to
data where the Fourier number based on the total time is
large, or if the solid is thermally thin for the largest time-
scale of interest. Actually, this is not the case. To consider
problems where the Fourier number based on the second
boundary at z2 is large all we need to do is shift the position
of t0 so that the largest Fourier number used in the calcu-
lation is restricted to a value that can be handled without
loss of accuracy. From a computational perspective it is
desirable to limit the maximum size since the largest Fou-
rier number influences the number of terms required in
the summations to infinity in Eqs. (13) and (19b). In the
previous section and in Appendix 1 we demonstrated that
the long-term history of high frequency eigenfunctions
could be neglected for a semi-infinite solid. If the solid is
finite then the long-term history even for the case where
mj = 0 can be neglected based on the Fourier number for
the position of the second boundary. A Fourier number
of aðt � t0Þ=z2

2 = 3.2 (for 0.0001% accuracy) can be used
as a suitable criterion where the heat flux boundary is zero
at z = z2. Note that this value is double that required for
the same accuracy when the temperature is measured at
z2 [5] to allow time for thermal waves to be reflected back
from the insulated boundary. This criterion translates to
using Eq. (22) (with C4 = 3.2) instead of t0 = 0 in Fig. 2
for the finite one-dimensional case.

t0 ¼Maxð0; t � C4L2=aÞ ð22Þ

For the two-dimensional case, Eq. (22) should be used for
the component where mj = 0. Therefore, in principle if the
sensor is infinitesimally small, the present procedure can be
applied to resolve any time scales that are much greater
than the minimum detectable time period as approximated
by atmin=z2

1 � 0.1.
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where the exact solution is a square wave in time (a) one sensor using
present approach and (b) two sensors with moving window.
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8. Application to problems with different boundary conditions

The above formulations are suitable for problems where
the domain can be treated as a semi-infinite solid or if at
z = z2 the boundary is perfectly insulated. Strictly speak-
ing, neither of these boundaries exists in reality. However,
as mentioned, if the Fourier number based on the total
time and the total thickness of the solid is less than about
0.1 then the solid may be considered semi-infinite for many
practical purposes. Also if the actual heat loss through the
insulation is small compared with the heat flux at the sur-
face of interest then the above finite formulation can be
used. Nonetheless, if we can estimate the heat loss at
z = z2, then it may be desirable to modify the boundary
condition in the formulation to better account for a known
heat flux. Likewise, if we have a thick solid with a few sen-
sors at z = z2 we may wish to use a temperature boundary
condition to close the problem rather than heat flux. In
fact, the present approach can be modified easily for such
cases. The formulation of the solution for these two impor-
tant cases is given in Appendix 2.

It should be mentioned that the approach in [5] is pre-
ferred for the case of sensors at two depths if both depths
are reasonably close to the surface. This is because the pro-
cedure is faster and simpler (compare Fig. 1(b) and (a)) and
there is less room for accumulation of numerical errors.
The present method has the merit that the position of z2

can be far from the surface and thus fewer sensors are
required at this boundary.

9. Results

9.1. One-dimensional semi-infinite case

Fig. 4 shows the predicted surface heat flux for a case
where for the exact result, the heat flux on the boundary is
in the form of a square-wave with respect to time. The sensor
response for Fig. 4 is given in Fig. 1 assuming the convention
(used in quenching experiments) that heat loss from the solid
is positive. Fig. 4(a) shows the present result for one sensor
and Fig. 4(b) shows the case for two sensors. The agreement
between the two cases and with the exact result is quite good.
The overshoots near the step changes is a result of the imper-
fect data fit near the sudden change in temperature inside the
solid and the general inability of the inverse solution to fully
resolve high frequency components.

Although not a major issue, it may be observed in
Fig. 4(b) that the solution overshoots both before and after
each step change in heat flux while in Fig. 4(a) the over-
shoot only occurs after the step change. This difference is
not so much due to the different method but simply a result
of how much future data is included in the calculation.
Fig. 4(b) follows the recommendations of [5] to specify
the size of (tf � t) which give a larger value than Eq. (8)
in the present study. If the same amount of future data is
used in both methods then the overshoot before the step
change becomes similar.
Considering the excellent performance of the two-sensor
approach with only a small amount of data as shown in
Fig. 4(b) (cf. Fig. 1(b)), one may wonder if it also is possible
to obtain good results with a small window of data and only
one sensor. Unfortunately this is not the case. Fig. 5(a)
shows the surface heat flux for the same case as in Fig. 4
but calculated based on temperature data from a single mov-
ing window and only one sensor. The size of the window was
the same as that used for Fig. 4(b). The poor agreement
between the calculation and exact result in Fig. 5(a) verifies
that for a single sensor and a far-field boundary condition,
the long-term history should not be neglected completely.

From another angle, to confirm the value of the correc-
tion terms in Eq. (1d), Fig. 5(b) gives the inverse solution
where only the first term on the right of Eq. (1d) is
included. For the first 3 s in Fig. 5(b) the predictions are
excellent. This is a reflection of how well the polynomial
in the half-power of time can approximate the data before
any sudden changes occur. Once the data begins oscillating
however, the polynomial without correction can no longer
follow the data accurately.

9.2. One-dimensional finite case

A further case that deserves attention is a finite slab
with one surface (z = 0) experiencing the same boundary



t (s)

q
(M

W
/m

2
)

5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

semi-infinite solution
thick plate solution

exact

Copper plate
59 mm thick
z1 = 2.1 mm

Fig. 6. Present predictions of surface heat flux for copper plate insulated
at z = 59 mm.

t (s)

q
(M

W
/m

2
)

5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

exact
one sensor (no correction terms)

(b)

t (s)

q
(M

W
/m

2 )

5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Copper 1D
square wave
z1 = 2.1 mm

exact
one sensor (moving window)

(a)

Fig. 5. Surface heat flux for IHCP where exact answer is a square wave (a)
moving window with one sensor and no long-term history and (b) Eq. (1d)
with no correction terms.

0

2

4

q
(M

W
/m

2 )

05101520 t (s)

0

20

40

r (m
m

)

Experiment
solid: brass
initial temp. : 300°C
water temp. : 50°C
jet velocity: 5 m/s

(a)

0

2

4

q
(M

W
/m

2 )

05101520 t (s)

0

20

40

r (m
m

)

(b)

Fig. 7. Surface heat flux calculated from experimental data of Hammad
et al. [9]. (a) Present solution using only data from sensors at depth
z1 = 2.1 mm and assuming insulated boundary condition at z = 59 mm.
(b) Using data from sensors at z1 = 2.1 mm and z2 = 5.0 mm (Fig. 7(b)
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condition as in Fig. 4 and the other surface (z = H) being
insulated. For this case the surface heat flux counterpart
to Eq. (13) is applicable. Fig. 6 gives the inverse solution
results for surface heat flux. The agreement between the
exact and the present thick-plate solution is excellent.

For reference, the semi-infinite solid solution is also
applied to the same problem in Fig. 6. Until about 7 s,
the semi-infinite result agrees well with the finite solution.
After about 8 s in Fig. 6 the semi-infinite result begins to
drift noticeably from the correct solution. This is expected
since the time for the thermal wave to penetrate 59 mm into
a copper plate is of the order of 3–4 s and the effects will
not be felt by the sensor near the surface for an additional
few seconds to allow for the time for the wave to be
‘reflected’ back from the insulated boundary.

9.3. Two-dimensional finite case

For verification of the two-dimensional formulation we
have selected data from impinging jet quenching experi-
ments by Hammad et al. [9]. Their experiment was per-
formed on a cylindrical brass block 94 mm diameter and
59 mm height. In comparison with heat extracted by the
water jet from the test surface, heat losses by radiation
and natural convection in air from the top may be consid-
ered small in this case. This provides justification for an
insulated boundary at z = 59 mm. In any case up until time
of about 11 s the test piece should behave much like a semi-
infinite solid. Hammad et al. measured temperatures at 16
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locations in the solid. Eight sensors were at a depth of
2.1 mm from the surface and the remaining eight were
5.0 mm below the surface. Unlike Eq. (19a) this example
requires cylindrical coordinates. However, as pointed out
in [5], the formulation for cylindrical coordinates only
requires that cos(mjx/L) in Eq. (19a) be replaced by the
Bessel function, J0(mjr/R), where R is the radius of the cyl-
inder, r is the radial position and mj is now the jth positive
root of J1(mj) = 0 for perfect insulation at r = R.

Using only the first depth and the zero heat flux bound-
ary at z = 59 mm, the present inverse solution gives the
heat flux distribution shown in Fig. 7(a). Fig. 7(b) shows
previous results [5] based on both depths. Fig. 8 gives the
difference between the two cases in Fig. 7. The maximum
difference of about 0.4 MW/m2 appears in the region where
the heat flux is changing rapidly. The peak heat flux in both
cases is similar being a little over 4 MW/m2. In general, the
agreement between the two cases in Fig. 7 is quite accept-
able. Differences partly may be due to uncertainties in the
sensor readings, changes in thermal properties with temper-
ature and heat losses through the top and sides of the test
piece. Also, because the final window in the present
approach tends to be smaller than the moving window
for the previous approach [5] we may expect less smoothing
of the higher frequency components for Fig. 7(a). For this
reason Fig. 7(a) has a slightly rougher appearance than
Fig. 7(b) and in fact this may be an important cause for
the differences in the calculated surface distributions.

Fig. 9 shows the calculated surface temperature distribu-
tions for the same case as in Fig. 7. The agreement between
the present calculations using Eq. (19) and the results using
the two-depth approach is excellent. The maximum tem-
perature difference between the two cases occurs in the
region where the temperature changes rapidly and is about
10�C, which is less than 5% of the total temperature drop
during the quench. This agreement again demonstrates
the usefulness of the present approach.
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10. Conclusions

Based on the above results and discussion the following
conclusions can be drawn.

1. The present inverse solutions are suitable for both one-
and two-dimensional heat conduction problems in sim-
ple geometry with sensors at one depth from the surface
and a far-field boundary.

2. By changing the boundary condition in the formulation,
the present method also can be applied to cases with sen-
sors at two depths where the second depth is far from
the surface.

3. The present method can be applied to thermally thin sol-
ids but due to the additional complications in the proce-
dure, other approaches as in [5] may be preferred for
such cases.

4. The proposed form (Eq. (1d)) for approximating the
measured data performs well.

5. Long-term history of the low frequency components in
the data cannot be neglected if a far-field boundary is
used in the inverse solution.

6. Long-term history of the high frequency components in
both time and space can be neglected.

7. High frequency components in the short-term history
are important and must not be neglected.
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Finally, the authors are pleased to make available
openly the software developed to implement the present
inverse solutions. Interested readers should contact the
Monde laboratory.
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Appendix 1. Justification for neglecting long-term history of

higher frequency eigenfunctions

Due to the numerical problems associated with using a
large data window mentioned in Section 6, the success or
failure of the present two-dimensional formulation hinges
on whether or not long-term history can be neglected for
the eigenfunction components where mj is large.

By way of illustration, consider the following forward
heat conduction problem.

1

a
oT
ot
¼ o

2T
oz2
þ o

2T
ox2

ðA1Þ

T jt¼0 ¼ 0 ðA2Þ
oT
ox

����
x¼0

¼ oT
ox

����
x¼L

¼ 0 ðA3Þ

T jz!1 ¼ 0 ðA4Þ
T jz¼0 ¼ A cosðmjx=LÞ ðt < t1Þ ðA5aÞ
T jz¼0 ¼ 0 ðt P t1Þ ðA5bÞ

Eqs. (A1)–(A4), (A5a), (A5b) represent a two-dimensional
problem where up until time = t1 the temperature boundary
condition at z = 0 is given by the cosine function expressed
in Eq. (A5a). After time t1, the surface temperature is zero
(i.e., homogeneous) and we wish to examine how long it
takes for the temperature distribution in the solid to return
to zero. In other words, how long does it take for the semi-
infinite solid to ‘forget’ the boundary condition (A5a) for
the eigenfunction corresponding to the eigenvalue, mj?

Using Laplace transforms, the exact solution to Eqs.
(A1)–(A5) can be derived as given in Eq. (A6).

T ¼ A cosðmjx=LÞ/ðz; tÞ ðA6aÞ

/ðz; tÞ ¼ e�mjz=L

2
erfc

z

2
ffiffiffiffi
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p �

ffiffiffiffiffiffiffiffiffiffi
am2

j t
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þ emjz=L
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z

2
ffiffiffiffi
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p þ

ffiffiffiffiffiffiffiffiffiffi
am2

j t
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s2
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3
5

� e�mjz=L

2
erfc

z

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � t1Þ

p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am2

j ðt � t1Þ
L2

s2
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� emjz=L

2
erfc

z

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � t1Þ

p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am2

j ðt � t1Þ
L2

s2
4

3
5 ðA6bÞ
Now to understand clearly the transient behavior of Eq.
(A6) after t1, we consider only the case where t1 is large.
The first two terms on the right in Eq. (A6b) then approach
the steady-state result, exp(�mjz/L). Eq. (A6b) then be-
comes Eq. (A7).

/ðz; tÞ � e�f � e�f

2
erfc

f
2
ffiffiffi
s
p �

ffiffiffi
s
p� 	

� ef

2
erfc

f
2
ffiffiffi
s
p þ

ffiffiffi
s
p� 	
ðA7aÞ

f ¼ mjz=L ðA7bÞ
s ¼ am2

j ðt � t1Þ=L2 ðA7cÞ

Although not immediately obvious it can be verified
numerically that for positive (t � t1) and z, / is always in
the range from zero to one and as time becomes larger
for any value of z, Eq. (A7a) approaches zero at a slightly
faster rate than erfc(s1/2). Thus for this particular case, the
long-term history, or the effect of the boundary condition
before time = t1, safely may be considered to vanish in pro-
portion to erfc((am2

j ðt � t1Þ=L2Þ1=2).
While the above illustration cannot be considered a rig-

orous proof, it demonstrates the general principle that for
conduction in solids, the long-term history of high fre-
quency spatial components is quickly forgotten. Naturally,
the same principle will apply for both forward and inverse
problems. Also in the above, the dimensionless group given
by Eq. (A7c) is shown to be the key for determining an
appropriate time-scale before which data may be neglected.

Appendix 2. Formulation for other boundary conditions

The present approach may be modified easily for bound-
ary conditions at z2 other than zero heat flux or the semi-
infinite condition. The purpose of this appendix is to
present some additional important cases. For brevity, we
give only the result and leave the derivation as an exercise
for the reader. In all of the following, the solutions are given
for any value of z from 0 to z2. This makes it easier to
extract the surface heat flux by differentiation or calculate
the temperature distribution in the solid if desired. Note
[11] that the first derivative of the repeated integral of the
complementary error function, ikerfc(x) is �ik�1erfc(x).
Substitute z = 0 to obtain the result at the surface.

A2.1. 1D finite slab, constant heat flux, q0, out of slab at z = z2,

temperature at z = z1 a function of time given by Eq. (1d)

T ðz; tÞ � T 0 ¼
2q0

ffiffiffiffi
at
p

k

X1
n¼0

ðð�1Þngnðz; tÞÞ þ
XN corr

i¼0

hiðz; tÞ

ðA8aÞ

gnðz; tÞ ¼ ierfc
2nðz2 � z1Þ þ z2 � 2z1 þ z

2
ffiffiffiffi
at
p

� �

� ierfc
2nðz2 � z1Þ þ z2 � z

2
ffiffiffiffi
at
p

� �
ðA8bÞ
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hiðz; tÞ ¼
X1
n¼0

ð�1Þnhðð2nðz2 � z1Þ þ z� z1Þ; tÞ

þ
X1
n¼0

ð�1Þnhðð2nðz2 � z1Þ þ 2z2 � z� z1Þ; tÞ ðA9Þ

where the function h(B,t) is specified by Eq. (A10).

hðB; tÞ ¼
XNk

k¼0

P i;kð4ðt � tiÞÞk=2ikerfc
B

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � tiÞ

p
 !

ðB P 0Þ

ðA10aÞ

hðB; tÞ ¼
XNk

k¼�1

Gi;kðt � tiÞk=2

Cððk=2Þ þ 1Þ ðB < 0Þ ðA10bÞ

The coefficients, Gi,k in Eq. (A10b) are determined by
equating coefficients in Eq. (A10c).

XN k

k¼�1

Gi;k

sðk=2Þþ1
¼
XNk

n¼0

P i;n

sðn=2Þþ1

X1
j¼0

1

j!
�Bffiffiffi

a
p
� �j

sj=2 ðA10cÞ

In Eq. (A8b) it was assumed that z2 P 2z1 but this restric-
tion does not apply to Eq. (A8a) if q0 is zero.

A2.2. 1D finite slab, temperature at z = z1 a function of time

given by Eq. (A11a), temperature at z = z2 a function of

time given by Eq. (A11b)

ðT � T 0Þjz¼z1
¼
XN corr

i¼0

XNk

k¼0

P ð1Þi;k

ðt � tiÞk=2

Cððk=2Þ þ 1Þ ðA11aÞ

ðT � T 0Þjz¼z2
¼
XN corr

i¼0

XNk

k¼0

P ð2Þi;k

ðt � tiÞk=2

Cððk=2Þ þ 1Þ ðA11bÞ
Eqs. (A12) and (A13) give the solution.

T ðz; tÞ � T 0 ¼
XN corr

i¼0

hiðz; tÞ ðA12Þ

hiðz; tÞ ¼
X1
n¼0

hð1Þðð2nðz2 � z1Þ þ z� z1Þ; tÞ

�
X1
n¼0

hð1Þðð2nðz2 � z1Þ þ 2z2 � z� z1Þ; tÞ

þ
X1
n¼0

hð2Þðð2nðz2 � z1Þ þ z2 � zÞ; tÞ

�
X1
n¼0

hð2Þðð2nðz2 � z1Þ þ z2 þ z� 2z1Þ; tÞ ðA13Þ

Again the function h(B, t) in Eq. (A13) is given by Eq.
(A10) but noting that the superscript is included so that
h(1)(B, t) and h(2)(B, t) indicates to use the coefficients P ð1Þi;k

and P ð2Þi;k , respectively. Eqs. (A12) and (A13) are preferred
to the method in [5] if z2 is not close to the surface.
A2.3. 2D finite slab, temperature at z = z1 a function of time

and x position given by Eq. (A14a), temperature at z = z2 a

function of time and x given by Eq. (A14b)

T jz¼z1
� T 0 ¼

XNj

j¼0

cos mj
x
L

� �XN corr;j

i¼0

� e�am2
j ðt�tiÞ=L2

XNk

k¼0

P ð1Þi;k;jðt� tiÞk=2
=Cððk=2Þþ 1Þ

" #

ðA14aÞ

T jz¼z2
� T 0 ¼

XNj

j¼0

cos mj
x
L

� �XN corr;j

i¼0

� e�am2
j ðt�tiÞ=L2

XNk

k¼0

P ð2Þi;k;jðt� tiÞk=2
=Cððk=2Þþ 1Þ

" #

ðA14bÞ

The solution is given by Eq. (A15).

T ðx; z; tÞ � T 0 ¼
XNj

j¼0

cos mj
x
L

� � XN corr;j

i¼0

e�am2
j ðt�tiÞ=L2

hi;jðz; tÞ

ðA15Þ
Notice in Eq. (A15) that the number of corrections, Ncorr,j

may be different depending on the eigenfunction (cf. Sec-
tion 6 above).

hi;jðz; tÞ ¼
X1
n¼0

hð1Þj ðð2nðz2 � z1Þ þ z� z1Þ; tÞ

�
X1
n¼0

hð1Þj ðð2nðz2 � z1Þ þ 2z2 � z� z1Þ; tÞ

þ
X1
n¼0

hð2Þj ðð2nðz2 � z1Þ þ z2 � zÞ; tÞ

�
X1
n¼0

hð2Þj ðð2nðz2 � z1Þ þ z2 þ z� 2z1Þ; tÞ ðA16Þ

Although the form of the function hð1Þj (B, t) in Eq. (A16) is
the same as in Eq. (A10), to show clearly that the coeffi-
cients are different depending on the eigenfunctions,
hð1Þj (B, t) is repeated in full for depth (1) in Eq. (A17).

hð1Þj ðB; tÞ ¼
XNk

k¼0

P ð1Þi;k;jð4ðt � tiÞÞk=2ikerfc
B

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt � tiÞ

p
 !

ðB P 0Þ

ðA17aÞ

hð1Þj ðB; tÞ ¼
XNk

k¼�1

Gð1Þi;k;jðt � tiÞk=2

Cððk=2Þ þ 1Þ ðB < 0Þ ðA17bÞ

The coefficients, Gi,k,j in Eq. (A17b) are determined by
equating coefficients in Eq. (A17c).

XNk

k¼�1

Gð1Þi;k;j

sðk=2Þþ1
¼
XNk

n¼0

P ð1Þi;n;j

sðn=2Þþ1

X1
p¼0

1

p!

�Bffiffiffi
a
p
� �p

sp=2 ðA17cÞ
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